Search AbuDhabiPR.com

Home >> Education and Learning

NYU Abu Dhabi Researchers Present New Evidence for How Heat is Transported Below the Sun's Surface

NYU Abu Dhabi Researchers Present New Evidence for How Heat is Transported Below the Sun's Surface

Thursday, June 27, 2024/ Editor -  

Share

Home >> Education and Learning

Using sound waves, scientists develop findings that challenge standard theories of solar convection

Abu Dhabi, UAE, June 27, 2024: A team of solar physicists at NYU Abu Dhabi's Center for Astrophysics and Space Science (CASS), led by Research Scientist Chris S. Hanson, Ph.D., has revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.

The sun generates energy in its core through nuclear fusion; that energy is then transported to the surface, where it escapes as sunlight. In the study "Supergranular-scale solar convection not explained by mixing-length theory" published in the journal Nature Astronomy, the researchers explain how they utilized Doppler, intensity and magnetic images from the helioseismic and magnetic imager (HMI) onboard NASA's Solar Dynamics Observatory (SDO) satellite to identify and characterize approximately 23,000 supergranules. Since the sun's surface is opaque to light, the NYUAD scientists used sound waves to probe the interior structure of the supergranules. These sound waves, which are generated by the smaller granules and are everywhere in the sun, have been successfully used in the past in a field known as Helioseismology.

By analyzing such a large dataset of supergranules, which were estimated to extend 20,000 Km (~3% into the interior) below the surface of the sun, the scientists were able to determine the up and down flows associated with supergranular heat transport with unprecedented accuracy. In addition to inferring how deep the supergranules extend, the scientists also discovered that the downflows appeared ~40 percent weaker than the upflows, which suggests that some component was missing from the downflows.

Through extensive testing and theoretical arguments, the authors theorize that the "missing" or unseen component could consist of small scale (~100Km) plumes that transport cooler plasma down into the sun's interior. The sound waves in the sun would be too big to sense these plumes, making the down flows appear weaker. These findings cannot be explained by the widely used mixing-length description of solar convection.

"Supergranules are a significant component of the heat transport mechanisms of the sun, but they present a serious challenge for scientists to understand," said Shravan Hanasoge, Ph.D., research professor, co-author of the paper and co-Principal Investigator of CASS. "Our findings counter assumptions that are central to the current understanding of solar convection, and should inspire further investigation of the sun's supergranules."

The research was conducted within CASS at NYUAD in collaboration with Tata Institute of Fundamental Research, Princeton University, and New York University, using NYUAD's high performance computing resources.


Previous in Education and Learning

Next in Education and Learning


Home >> Education and Learning Section

Latest Press Release

WFP requires us$16.9 billion in 2025 to respond to unrelenting humanitarian need ...

Ministry of Finance Launches the Financial Sustainability Standards Guide for th ...

Masdar and Silk Road Fund Sign Co-investment Agreement for Renewable Energy Proj ...

Abu Dhabi International Boat Show ends with spectacular displays and groundbreak ...

Response Plus Medical ambulance at NYU Abu Dhabi enhances emergency access to st ...

IATA Wings of Change Europe Conference Calls for EU to Prioritize Competitivenes ...

Under the Patronage of His Highness Sheikh Hamdan bin Zayed Al Nahyan Abu Dhabi ...

Etihad airways and new York City FC announce Etihad Park

AD Ports Group Signs Framework Agreement with Egyptian Government to Explore Bui ...

His Excellency Sheikh Nahayan bin Mabarak Al Nahyan inaugurates XPANSE 2024 in A ...

Day one of XPANSE 2024 closes after a vibrant display of exponential technology ...

Etihad airways calls for memories over merchandise this white friday

Hotpack Global bags EcoVadis “Committed” badge; reinforces commitment to sustain ...

Beatriz haddad maia returns for third edition of mubadala abu dhabi open

China-UAE Industrial Capacity Cooperation (Jiangsu) Development and Management L ...

Official Opening of the 2nd Chinese Industrial Products Exhibition 2024 Marks a ...

Benefit Cosmetics is revealing its Benemart Holiday Collection!

Etihad Reports October 2024 Traffic Statistics

TAQA, JERA and Al Bawani Consortium to Develop Two New Highly Efficient Power Pl ...

Researchers Develop Crystals to Harvest Water from Air, Inspired by Desert Life